Index was outside the bounds of the array. 文章摘要
|本期目录/Table of Contents|

[1]陈 琪. 变系数非线性薛定谔方程的一般达布变换及畸形波解[J].内江师范学院学报(自然科学),2020,08:46-50.
点击复制

 变系数非线性薛定谔方程的一般达布变换及畸形波解(PDF)

《内江师范学院学报(自然科学)》[ISSN:1671-1785/CN:51-1521/Z]

期数:
2020年08期
页码:
46-50
栏目:
出版日期:
2020-08-25

文章信息/Info

Title:
-
文章编号:
1671-1785(2020)08-0046-05
作者:
 陈 琪
 广东工业大学
Author(s):
-
关键词:
 非线性薛定谔方程变系数一般达布变换畸形波解
Keywords:
-
分类号:
O175
DOI:
10.13603/j.cnki.51-1621/z.2020.08.009
文献标识码:
A
摘要:
 通过构造变系数非线性薛定谔方程的一般达布变换,进而得到了该方程的畸形波解,同时结合图形展
示了一阶畸形波解和二阶畸形波解,并对解进行了一些分析.
Abstract:

参考文献/References

 [1]LIUPC.Achronologyoffreaquewaveencounters[J].Geofizika,2007,24(1):57-70.
[2]NIKOLKINAI,DIDENKULOVAI.Roguewavesin2006-2010[J].NaturalHazardsandEarthSystemSciences,2011,11:2913-2924.
[3]DRAPERL.‘Freak’oceanwaves[J].Oceanus,1964,10(4):13-15.
[4]SMITH R.Giantwaves[J].JournalofFluidMechanics,1976,77(3):417-431.
[5]BLUDOV Y V,KONOTOP V V,AKHMEDIEV N.Matterroguewaves[J].PhysicalReview A,2009,80(3):033610.
[6]SOLLIDR,ROPERSC,KOONATH P,etal.Optical图3 二阶畸形波解的分解注:参数取值R(z)= D(z)= 1,F(z)= -2sech2(z+1.5),G(z)=0,w(z)=z-2tanh(z+1.5) z ,Φ(p)= (b+ic)p2,b=100,c=0.roguewaves[J].Nature,2007,450:1054-1057.
[7]AKHMEDIEVN,DUDLEYJM,SOLLIDR,etal.Recentprogressininvestigatingopticalroguewaves[J].JournalofOptics,2013,15(6):060201.
[8]胡文成,张解放,赵辟,等.光纤放大器中非自治光畸波的传播控制研究[J].物理学报,2013,62(2):024216.
[9]RUDERMAN MS.Freakwavesinlaboratoryandspaceplasmas[J].EuropeanPhysicalJournalSpecialTopics,2010,185(1):57-66.
[10]GANSHIN A N,EFIMOV V B,KOLMAKOV G V,etal.Observationofaninverseenergycascadeindevelopedacousticturbulenceinsuperfluidhelium[J].PhysicalReviewLetters,2008,101(6):065303.
[11]SHATSM,PUNZMANN H,XIA H.Capillaryroguewaves[J].PhysicalReview Letters,2010,104(10):104503.
[12]YAN Z Y.Financialroguewaves [J].CommunicationsinTheoreticalPhysics,2010,54(5):947-949.
[13]HAO R Y,ZHOU GS.Exactmulti-solitonsolutionsinnonlinearopticalsystems[J].OpticsCommunica-tions,2008,281(17):4474-4478.
[14]CHENQ,ZHANG W G,ZHANG H Q,etal.RoguewavesolutionsfornonlinearSchr¨odingerequationwithvariablecoefficientsinnonlinearopticalsystems [J].CommunicationsinTheoreticalPhysics,2014,62(3):373-382.

备注/Memo

备注/Memo:
更新日期/Last Update: 2020-09-11